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Abstract MANETSs (Mobile Ad-hoc NETworks) are an example of Peer-to-Peer
(P2P) mobile networks in which security attacks, as black-hole onesceme
serious dangers to the whole system. The watchdog is a well-knownrsesso
ally adopted for detecting black-holes in such networks, but typical watgh
are characterized by a relatively high number of false positive anativegases,
which can affect the effectiveness and efficiency to deal with intrgsidns pa-
per proposes a novel approach for detecting black-hole attacksHisth $iodes

in mobile P2P networks by using a watchdog sensor and a bayesian filtéféng
demonstrate the validity of the approach through thorough testing.

1 Introduction

Peer-to-Peer(P2P) mobile networks, such as Mobile Ad hobadeks (MANETS), are
distributed systems composed by wireless mobile nodesamgteely and dynamically
self-organise into arbitrary and temporary topologies T8lese networks have origins
in military missions and recovery operations but, in theergg/ears, a wide range of
possible civil applications emerged, e. g., vehicular oeks (a.k.a. VANETS), a form
of P2P mobile networks used for communication among vehigtel between vehicles
and roadside equipment.

The main characteristic of such networks is that they allifferent kinds of de-
vices to easily interconnect in areas with no pre-existmgmmunication infrastructure;
there exist several protocol specifications, such as AOOMljat aim to find routing
paths between pairs of devices. These allow non-neighbgumddes to communicate
by using intermediate nodes as relays. But the majority e$¢hprotocols assume a
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friendly, reliable and cooperative environment. Therefar single malicious node can
easily prevent a mobile network from working, and therefive emerging need for
research focused on the provision of practical proposalsdouring them [5].

In this context, intrusion detection systems (IDSs) aim ahitoring the activity
of the various nodes in the network in order to detect mistielies. A basic brick
of some IDSs is the watchdog, a collective name for speciaas that can detect
selfish nodes and black-hole attack&ré watchdog is continuously listening neigh-
boring devices for verifying that they, when they are notfihal expected recipients,
forward packets/messages toward the final destinatiodsebhin MANETS every node
is able to analyse the packet headers and learn whetheroeighg nodes are the ac-
tual receivers or, conversely, they should forward it tothapnode on the path to the
destination. Devices that do not forward packets for whiakytare not recipient are
considered as misbehaving.

Malicious nodes’ detections of current-day watchdogs #iected by several er-
rors due to nodes’ mobility and signal noises. This work a&thseducing the number
of false positives and negatives by integrating watchdoigs bayesian filtering tech-
nigues. Bayesian filters can partly fade the problems bygukistorical information
obtained by the watchdog in the previous time. The technmoposed is independent
of the underlying routing protocols and, hence, is widelplmable in several differ-
ent scenarios of P2P mobile networkdn a few words, the proposed approach can be
summarized as follows:

1. Every node installs a watchdog, thus allowing for deterthisbehaviors (e.g., the
number of packets that nodes should forward but that theyotida).

2. The percentage of packets that nodes do not correctlyaforig used as input for
the bayesian filters in order to predict the percentage offapmarded packets in
the near future. If such a percentage is higher than a cehti@shold, then the node
is considered as malicious since it does not behave corr@dtase note that it is
not possible to assume that “good” nodes forward correditiyackets because of
radio noises, packet losses and other similar charadtsrist the aerial medium,
which cause some delivery attempts to fail.

3. Every node that detects this malicious behaviour enaldesequently appropriate
actions to avoid malicious nodes to influence the right ndtisdunctioning. Every
device can take its own recovery actions, or, conversdipoales can reach a con-
sensus on the collaborative actions to deal with the sdanatiowever, this point
is out of the scope of this paper: we focus on signalling nli€ nodes, assuming
another component to take care of mitigating the conseaseofcsuch attacks.

The rest of this paper is organised as follows. Section 2 sanises relevant work
and the motivation of our work. Section 3 introduces bayefigers, whereas Section 4

4 A black-hole is a type of attack to the network in which a node intends to ditegtommu-
nication with its neighbourhood by attracting all traffic flows in the networkthed dropping
all packets received without forwarding them to their final destination

5 The reader should note that the general approach here propuerdf éemonstrated through
testing in the context of MANETS, is in general applicable to a wide spectfirf® networks,
not only mobile, but also application overlay networks, etc.



presents our adaptation of the bayesian filters for degtiimck-hole attacks. Section
5 complements our development proposal by explaining tfierdnt implementation
trade-offs that should be taken into account. Section 6 shibesevaluation performed
to validate our mechanism. Finally, Section 7 outlines fsguture work.

2 Redated Work

The concept of watchdog is not a novelty in the literaturee Buthe effectiveness of
this methodology and its relative easy implementationesdvproposals use it as the
basis of their IDS solutions. Similarly to our approach,if8plements a watchdog that
listens neighboring nodes and checks whether they miskeiathey do not forward
the packets they are supposed to. In the Pathrater apprb@fhepch node uses the
information provided by watchdogs to rate neighbours. ThetBguard mechanism [6]
combines the watchdog and Pathrater solutions to clasadl aeighbouring node as
Fresh, Member, Unstable, Suspect or Malicious. Other ambres like Patwardhan [11]
extend the detection capabilities provided by the watchalitig public key encryption
and signatures. [12] uses watchdogs in order to preventimadi nodes from breaking
the routing protocols.

But as already pointed out in [10], the problem of all of theskutions is that the
used watchdogs report a lot of false detections. Hence,abegider malicious nodes
that really are not or, vice versa, actual malicious nodesat detected as such. The
approach we are proposing is more precise as it integratesitpies to mitigate the
causes of erroneous detections, that are radio noises apaddtket losses.

The appropriatenes of bayesian filtering for our intent hesnbpreviously con-
firmed in several fields, such as to implement reputatioresyst[2] or to predict the
nodes’ disconnections [9].

3 Bayesian Filtering

Bayesian filters [1] probabilistically estimate a dynamjstem’s state from noisy ob-
servations. At time, the state is estimated by a random variahleshich is unknown
and this uncertainly is modelled by assuming thaself is drawn according to a dis-
tribution that is updated as new observations become &lil#t is calledbelief or
Bel.(0). To illustrate this, let's assume that there is a sequefitme-indexed observa-
tionszy, 29, ..., z,. The Be}(#) is then defined by the posterior density over the random
variablef conditioned on all sensor data available at time

Beli(0) = p(0)z1, 22, ., 2t)

In our approach, the random varial&elongs to [0,1]. Then we use for thelief the
distribution Beta(«, 5) that is suitable for this interval:

Belt (9) = B@ta(at7 Bta 9)

wherea and g represent the state of the system, and it is updated acgotdithe
following equations:



Qi1 = Q + 2¢
Bi1 = B + 2

The Beta function only needs two parameters that are canisiy updated as obser-
vations are made or reported. In our approach, the obsenvatirepresents the infor-
mation from the watchdog obtained in time inter{iak + 1] about the percentage of
non-forwarded packets.

4 TheBayesian Watchdog

Our approach is based on the information of the incoming g@iacthat devices have
not forwarded, nonetheless they should have done so. Oeslzaywatchdog relies on
some basic assumptions:

1. Every device is equipped with a wireless card that allawgpfomiscuous mode:
any device can listen the packets traversing its neighlmmatland, hence, monitor
the activity of one-hop distant nodes.

2. Each node has an implementation of a watchdog sensarijrditate ag. Thei-
th watchdog of a given node monitors the incoming and outgtiaffic of every
neighbouring node. In this way, analysing the packet headtés able to count the
packets that nodes did not forward.

3. Each node has at least three neighbours. We assume aydsribié network that
makes different paths possible for reaching a destinatind,each node is moni-
tored by different neighbours.

The watchdog of devicéis in charge of listening the packets’ traffic in its neighbor
hood and verifying whether the percentage of packets tlamair correctly forwarded
by every neighboring devicg. If a givenj forwards less than a given percentage of
packets that it should, the watchdog considg®s misbehaving. Device does not
know a priori such a percentage for each neighboring naated, therefore, it defines a
random variablé; (j) to estimate it for;. In fact,;(j) is the viewpoint of device for
what concerns devicg It is worthy highlighting that taking only the last obsetieoa
is not sufficiently reliable since this could be effected loyse. So the old observations
should be considered.

Therefore our watchdog makes use of bayesian filtering, s&ritbed in Section 3.
Variable; (;) complies with the Beta distribution with parameténs’7), 3(%7)). These
parameters are continuously updated with new incomingraeasens of the percentage
of non-forwarded packets. Nodenakes periodical observations eddeconds (with
constant) of the behaviour of noglelet s be the percentage of packets observed by
that are not forwarded by noglén this observation period. Parametefé7/) and (7
are updated as follows:

{a(m‘) =l 4 g @1

B9 =y B9 4 (1 — )

Valuesa!™7) and3(*7) are initially set to 1.



The variableu is a fading mechanism for past experiences. This fading amésim
allows for redemption of a neighbour if its behaviour chamgea correct one along
the time. This fading mechanism will be useful if there arsdepositives due to the
environmental noise. Greater values fotorresponds to consider the old observations
more significantly.

With the beta function defined previously we can define thetajpn function of
nodej on nodei R;(j) using the estimated distributidBeta(c;(7), 5;(j)) of variable

0:(j):

=1 (4.2)
0 P(6:(j) > v

where

P(0,() < 7) = / " Beta(as(3), 8:())

If R;(j) = 0, node: reputes;j as malicious. This means that nofiés malicious
if the estimated percentage of packets that are not coyrrtivarded is more than a
given valuey, namedtol erance threshold. This tolerance threshold may be depending
on the environmental noise and must be defined for each soenar

5 Tuning of the Bayesian Watchdog

The bayesian filtering used in our watchdog approach is bassdme parameters that
need in several cases to be tuned for the specific scenarmgytha previous training
procedure. In particular, the bayesian filtering dependsherfollowing parameters:

Tolerancethreshold . An higher value for the tolerance threshold requires mone ti
for the watchdog to detect an attack, as an higher value bbatpneeded on func-
tion 4.2 to set the reputation as malicious; to achieve tighdr value of alpha,
the bayesian filter needs to perform more observations.ddute other hand, the
watchdog is more robust against environmental noise (kdss positives). Con-
versely, if we set a low value for gamma, some nodes affecyatbise would be
declared as malicious ones and false positives would appear

Fading value u. This parameter indicates the weight of the old informatibtamed
by the bayesian watchdog. When closer to 1, the old obsengtigight similarly
to the new ones. In case of the change of the behavior of a gigda, since the
misbehavior detected in the latest observation periodsostignas relevant as the
good behavior observed in the past, the bayesian filtersreemore time to learn
that the node has changed to a bad behavior. On the otherthareffects of noise
onto the filter become less relevant and they are mitigatatdpast observations.
Therefore, the percentage of false positives is lower. (Giefar smalleru’s value,
the opposite behavior should be observed.

Updating time. This is the period between two subsequent updates of pagesnet
andg according to the observations harvested about the padiatsarongly, are
not forwarded. Too frequent updates can cause problem teetyesian filters if the
noise is relatively high. If the the filter's parameter is aft frequently and the
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Figure6.1. Actual detections and false positives in a static scenario.

packet losses are high, it is likely that the number of packateived in the update
period is nearly 0%, thus causing nodes to be wrongly corsitlas malicious.

Conversely, if the observation time is too long, parameseesupdated too infre-
guently and, hence, the time to detect a malicious node megnbe unacceptable.

6 Evaluation

We have performed several tests using the ns-2 simulatirfid3der to evaluate the
approach and to tune some of the parameters of the bayes@s fised inside the
watchdog. In our simulation we considered a network of 50esasioving in an area
870x870 mt wide.

We have performed our experiments both considering stati@dgnamic scenarios.
The mobility affects the accuracy of the watchdog due to tmpadrtant aspectgi)
routes used for the traffic flow need to be recalculated eawh tthe topology changes,
causing packet losses; afii if the attacker is moving, there is a possibility that the ma-
licious node moves outside the watchdog’s signal rangerééfis detected. Both char-
acteristics of these scenarios cause false negatives laedfasitives to be increased.

6.1 Static Scenario

We use random scenarios for validating the implementati@muobayesian watchdog.
In the first place we perform several tests to evaluate thaviebr of the watchdog’s
module in a static scenario. Figure 6.1 shows how the bayesidchdog detects the
100% of the attacks independently of the number of attadkertsthere are in the net-
work, and therefore a 0% of false negatives. The absence lofitgonakes the number
of false positives negligible. But, that is not a realisttting.
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Figure6.2. Percentage of (a) actual attacks detected and (b) false positivafdoet tolerance
threshold and for different devices’ speed.

6.2 Dynamic Scenario

The experiments described below are targeted to find thetingisiy of parameters in
order to improve the effectiveness. The experiments haga benducted for different
motion speeds of the MANET devices, thus verifying how theegspcan affect the
detection of malicious nodes.

Evaluation of the Tolerance Threshold v. We perform different tests in scenarios
with different mobility speeds and changing the tolerafreshold. Figure 6.2 shows
the results measured. For both of diagramstlagis represents the various thresholds
tested. In Figure 2(a) and Figure 2(b), thexes measure respectively the percentage
of actual attacks detected and false negatives. For thétg'eanalysis, it seems any
threshold between 0.75 and 0.85 decreases the false pesithile keeping a good rate
detection.

A survey of the ns-2 trace shows that an higher value of ganctoadr tol) causes
the bayesian watchdog to be more strict when detecting aokattiecreasing the false
positives but also decreasing the percentage of detediisis caused by the fact that,
as discussed in Section 5, the watchdog needs an higher afigha to decide if a
neighboring node is malicious, and therefore, more timeeded to detect it.

Evaluation of the Fading Value u. The next step is to evaluate what is the influence of
the fading value upon the accuracy of detection. Figure [608vs the results obtained
when varying the fading value of the bayesian watchdog. Weagamma value of 0.85
for these tests, as it seemed the most suitable accordirge teesults of the previous
experiments for the tolerance threshold.

As shown in Figure 6.3, we can see how an high value of fadingdee robust
against false positives. But, when a node starts behavirigimsly, it takes longer
to detect that. Therefore, such a longer time decreasestheary of detecting actual
attacks. As a result, the optimal fading value may be dependn the needs of the
network. E.g., if the routing protocol needs to recalcula¢gv routes frequently due
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Figure6.3. Percentage of (a) actual attacks detected and (b) false positivesfévernt fading
values and different mobility speeds.
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Figure6.4. Percentage of (a) actual attacks detected and (b) false positivesuahgng the
updating time.

to a high value of the node’s speed, a higher value of fadimgagemmended. Or, if a
malicious node performs intermittent attacks, a lower @afifading is needed.

Evaluation of the Update Time. Figure 6.4 confirms what stated in Section 5: shorter
update time of the parameters of the bayesian filter incrésribe detection of false
negatives but also decrements the accuracy for what cantieralse positives.

6.3 Comparingthe Bayesian Watchdog with a Standard One

The section proposes a comparison between the standarddegtand the bayesian
watchdog in order to judge whether bayesian filters canyrdsdl supportive in the
accuracy of the detection of malicious nodes. Specifically,have used a standard
watchdog that was previously implemented [7] (with tolemthreshold of 20%). As
far as the bayesian watchdog, the tolerance has been8&btahe fadingu to 0.5 and
the updating time to 2 seconds.

Figure 6.5 shows a comparison between the bayesian watcarmbthe standard
watchdog in a set of scenarios where the degree of mobilitanging. As far as the



T T
Standard watchdog ==——

T T
Standard watchdog ———
i — Bayesian watchdog mmsmm

. Bayesian watchdog meem

08 |-

06

Attacks Detected (%)

04

02

False positives (ratio respect to the real attacks)

! ] i ]
- 0

5m/s 10m/s 15m/s 20m/s 5m/s 10m/s 15m/s 20m/s

Scenarios with different mobility Scenarios with different mobility

(a) (b)
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percentage of actual attacks detected, Figure 6.5(a) sthawvthe bayesian watchdogs
perform mostly at the same level as the standard. Some sm@ibvements have been
measured for scenarios where nodes were moving fastectiritie bayesian watchdog
is less affected by the problem of the mobility as explainetha beginning of this
section.

The best improvement has been measured for what concergsdasitives that
have been decreased of 20%. Indeed, the bayesian filter dagisvell with noisy
environment such as MANETS. A smaller influence of the naisthé measurement of
the non-correctly forwarded packets has resulted in a slowmber of false positives.

In addition to a significant decrease of false positivesptngesian watchdog is also
able to detect malicious behaviors more quickly that stechdaes.

7 Conclusionsand Future Work

The work described in this paper is aimed at increasing theracy of the detection of
malicious nodes’ behaviour in P2P networks, as MANETSs. (rieeomost significant
problems of the standard watchdog are concerned with theeimde of the noisy ob-
servation upon the accuracy. Here we have proposed a heswaflamtchdogs that rely
on bayesian filters. Bayesian filters are broadly used inraégeenarios due to their
ability to reduce the influence of the noise on the measuresnen

In the standard watching, most of the false positives andtiets are caused by the
erroneous measurements of the packets that nodes showktrddout actually they do
not. The erroneous measurements are mostly caused by #adibility of the wireless
medium. Nothing can be done on reducing that. But bayesitmifiy deal very well
with preventing this node from influencing the judgementef inaliciousness of given
devices.

We have devised a technique to integrate bayesian filtegolgidues inside the
watchdogs and we have conducted some experiments insids-Zrinmplementation
to verify the approach. The integration of bayesian filtgrinside the watchdogs has
decreased the number of false positives detected whilegireeptage of the detection



of the actual attacks has been kept quite high (or, evehtblignproved). As future
work, we intend to provide a concrete implementation of aydsian watchdog and to
perform a deeper experimental phase on the real devices.

Moreover, we argue that the approach to detect maliciouesocdn be applied also

to other P2P networks (e.g., application overlay netwobysuitably modifying the
conceps of what it is observed and what is the noisy (transdgackets in MANETS,
could be application messages in overlay networks, etc.)
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