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Abstract MANETs (Mobile Ad-hoc NETworks) are an example of Peer-to-Peer
(P2P) mobile networks in which security attacks, as black-hole ones, maycause
serious dangers to the whole system. The watchdog is a well-known sensor usu-
ally adopted for detecting black-holes in such networks, but typical watchdogs
are characterized by a relatively high number of false positive and negative cases,
which can affect the effectiveness and efficiency to deal with intrusions.This pa-
per proposes a novel approach for detecting black-hole attacks and selfish nodes
in mobile P2P networks by using a watchdog sensor and a bayesian filtering. We
demonstrate the validity of the approach through thorough testing.

1 Introduction

Peer-to-Peer(P2P) mobile networks, such as Mobile Ad hoc NETworks (MANETs), are
distributed systems composed by wireless mobile nodes thatcan freely and dynamically
self-organise into arbitrary and temporary topologies [8]. These networks have origins
in military missions and recovery operations but, in the recent years, a wide range of
possible civil applications emerged, e. g., vehicular networks (a.k.a. VANETs), a form
of P2P mobile networks used for communication among vehicles and between vehicles
and roadside equipment.

The main characteristic of such networks is that they allow different kinds of de-
vices to easily interconnect in areas with no pre-existing communication infrastructure;
there exist several protocol specifications, such as AODV [4], that aim to find routing
paths between pairs of devices. These allow non-neighbouring nodes to communicate
by using intermediate nodes as relays. But the majority of these protocols assume a
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friendly, reliable and cooperative environment. Therefore, a single malicious node can
easily prevent a mobile network from working, and thereforethe emerging need for
research focused on the provision of practical proposals for securing them [5].

In this context, intrusion detection systems (IDSs) aim at monitoring the activity
of the various nodes in the network in order to detect misbehaviours. A basic brick
of some IDSs is the watchdog, a collective name for special sensors that can detect
selfish nodes and black-hole attackers4. A watchdog is continuously listening neigh-
boring devices for verifying that they, when they are not thefinal expected recipients,
forward packets/messages toward the final destinations. Indeed in MANETs every node
is able to analyse the packet headers and learn whether neighbouring nodes are the ac-
tual receivers or, conversely, they should forward it to another node on the path to the
destination. Devices that do not forward packets for which they are not recipient are
considered as misbehaving.

Malicious nodes’ detections of current-day watchdogs are affected by several er-
rors due to nodes’ mobility and signal noises. This work aimsat reducing the number
of false positives and negatives by integrating watchdogs with bayesian filtering tech-
niques. Bayesian filters can partly fade the problems by using historical information
obtained by the watchdog in the previous time. The techniqueproposed is independent
of the underlying routing protocols and, hence, is widely applicable in several differ-
ent scenarios of P2P mobile networks5. In a few words, the proposed approach can be
summarized as follows:

1. Every node installs a watchdog, thus allowing for detecting misbehaviors (e.g., the
number of packets that nodes should forward but that they do not do).

2. The percentage of packets that nodes do not correctly forward is used as input for
the bayesian filters in order to predict the percentage of non-forwarded packets in
the near future. If such a percentage is higher than a certainthreshold, then the node
is considered as malicious since it does not behave correctly. Please note that it is
not possible to assume that “good” nodes forward correctly all packets because of
radio noises, packet losses and other similar characteristics of the aerial medium,
which cause some delivery attempts to fail.

3. Every node that detects this malicious behaviour enablesconsequently appropriate
actions to avoid malicious nodes to influence the right network’s functioning. Every
device can take its own recovery actions, or, conversely, all nodes can reach a con-
sensus on the collaborative actions to deal with the situation. However, this point
is out of the scope of this paper: we focus on signalling malicious nodes, assuming
another component to take care of mitigating the consequences of such attacks.

The rest of this paper is organised as follows. Section 2 summarises relevant work
and the motivation of our work. Section 3 introduces bayesian filters, whereas Section 4

4 A black-hole is a type of attack to the network in which a node intends to disruptthe commu-
nication with its neighbourhood by attracting all traffic flows in the network andthen dropping
all packets received without forwarding them to their final destination

5 The reader should note that the general approach here proposed, even if demonstrated through
testing in the context of MANETs, is in general applicable to a wide spectrum of P2P networks,
not only mobile, but also application overlay networks, etc.



presents our adaptation of the bayesian filters for detecting black-hole attacks. Section
5 complements our development proposal by explaining the different implementation
trade-offs that should be taken into account. Section 6 shows the evaluation performed
to validate our mechanism. Finally, Section 7 outlines possible future work.

2 Related Work

The concept of watchdog is not a novelty in the literature. Due to the effectiveness of
this methodology and its relative easy implementation, several proposals use it as the
basis of their IDS solutions. Similarly to our approach, [3]implements a watchdog that
listens neighboring nodes and checks whether they misbehave as they do not forward
the packets they are supposed to. In the Pathrater approach [10], each node uses the
information provided by watchdogs to rate neighbours. The Routeguard mechanism [6]
combines the watchdog and Pathrater solutions to classify each neighbouring node as
Fresh, Member, Unstable, Suspect or Malicious. Other approaches like Patwardhan [11]
extend the detection capabilities provided by the watchdogwith public key encryption
and signatures. [12] uses watchdogs in order to prevent malicious nodes from breaking
the routing protocols.

But as already pointed out in [10], the problem of all of thesesolutions is that the
used watchdogs report a lot of false detections. Hence, theyconsider malicious nodes
that really are not or, vice versa, actual malicious nodes are not detected as such. The
approach we are proposing is more precise as it integrates techniques to mitigate the
causes of erroneous detections, that are radio noises and the packet losses.

The appropriatenes of bayesian filtering for our intent has been previously con-
firmed in several fields, such as to implement reputation systems [2] or to predict the
nodes’ disconnections [9].

3 Bayesian Filtering

Bayesian filters [1] probabilistically estimate a dynamic system’s state from noisy ob-
servations. At timet, the state is estimated by a random variableθ, which is unknown
and this uncertainly is modelled by assuming thatθ itself is drawn according to a dis-
tribution that is updated as new observations become available. It is calledbelief or
Belt(θ). To illustrate this, let’s assume that there is a sequence of time-indexed observa-
tionsz1, z2, ..., zn. The Beli(θ) is then defined by the posterior density over the random
variableθ conditioned on all sensor data available at timet:

Belt(θ) = p(θ|z1, z2, ..., zt)

In our approach, the random variableθ belongs to [0,1]. Then we use for thebelief the
distributionBeta(α, β) that is suitable for this interval:

Belt(θ) = Beta(αt, βt, θ)

whereα andβ represent the state of the system, and it is updated according to the
following equations:



{

αt+1 = αt + zt

βt+1 = βt + zt

The Beta function only needs two parameters that are continuously updated as obser-
vations are made or reported. In our approach, the observation zt represents the infor-
mation from the watchdog obtained in time interval[t, t + 1] about the percentage of
non-forwarded packets.

4 The Bayesian Watchdog

Our approach is based on the information of the incoming packets that devices have
not forwarded, nonetheless they should have done so. Our bayesian watchdog relies on
some basic assumptions:

1. Every device is equipped with a wireless card that allows for promiscuous mode:
any device can listen the packets traversing its neighbourhood and, hence, monitor
the activity of one-hop distant nodes.

2. Each node has an implementation of a watchdog sensor, let’s indicate asi. Thei-
th watchdog of a given node monitors the incoming and outgoing traffic of every
neighbouring node. In this way, analysing the packet headers, it is able to count the
packets that nodes did not forward.

3. Each node has at least three neighbours. We assume a density of the network that
makes different paths possible for reaching a destination,and each node is moni-
tored by different neighbours.

The watchdog of devicei is in charge of listening the packets’ traffic in its neighbor-
hood and verifying whether the percentage of packets that are not correctly forwarded
by every neighboring devicej. If a given j forwards less than a given percentage of
packets that it should, the watchdog considersj as misbehaving. Devicei does not
know a priori such a percentage for each neighboring nodej and, therefore, it defines a
random variableθi(j) to estimate it forj. In fact,θi(j) is the viewpoint of devicei for
what concerns devicej. It is worthy highlighting that taking only the last observation
is not sufficiently reliable since this could be effected by noise. So the old observations
should be considered.

Therefore our watchdog makes use of bayesian filtering, as described in Section 3.
Variableθi(j) complies with the Beta distribution with parameters(α(i,j), β(i,j)). These
parameters are continuously updated with new incoming observations of the percentage
of non-forwarded packets. Nodei makes periodical observations eacht seconds (witht
constant) of the behaviour of nodej. Let s be the percentage of packets observed byi
that are not forwarded by nodej in this observation period. Parametersα(i,j) andβ(i,j)

are updated as follows:
{

α(i,j) := u · α(i,j) + s

β(i,j) := u · β(i,j) + (1− s)
(4.1)

Valuesα(i,j) andβ(i,j) are initially set to 1.



The variableu is a fading mechanism for past experiences. This fading mechanism
allows for redemption of a neighbour if its behaviour changes to a correct one along
the time. This fading mechanism will be useful if there are false positives due to the
environmental noise. Greater values foru corresponds to consider the old observations
more significantly.

With the beta function defined previously we can define the reputation function of
nodej on nodei Ri(j) using the estimated distributionBeta(αi(j), βi(j)) of variable
θi(j):

Ri(j) :=

{

1 P (θi(j) < γ

0 P (θi(j) ≥ γ
(4.2)

where

P (θi(j) < γ) =

ˆ γ

0

Beta(αi(j), βi(j))

If Ri(j) = 0, nodei reputesj as malicious. This means that nodej is malicious
if the estimated percentage of packets that are not correctly forwarded is more than a
given valueγ, namedtolerance threshold. This tolerance threshold may be depending
on the environmental noise and must be defined for each scenario.

5 Tuning of the Bayesian Watchdog

The bayesian filtering used in our watchdog approach is basedon some parameters that
need in several cases to be tuned for the specific scenarios through a previous training
procedure. In particular, the bayesian filtering depends onthe following parameters:

Tolerance threshold γ. An higher value for the tolerance threshold requires more time
for the watchdog to detect an attack, as an higher value of alpha is needed on func-
tion 4.2 to set the reputation as malicious; to achieve this higher value of alpha,
the bayesian filter needs to perform more observations. But,on the other hand, the
watchdog is more robust against environmental noise (less false positives). Con-
versely, if we set a low value for gamma, some nodes affected by noise would be
declared as malicious ones and false positives would appear.

Fading value u. This parameter indicates the weight of the old information obtained
by the bayesian watchdog. When closer to 1, the old observations weight similarly
to the new ones. In case of the change of the behavior of a givennode, since the
misbehavior detected in the latest observation periods is mostly as relevant as the
good behavior observed in the past, the bayesian filters require more time to learn
that the node has changed to a bad behavior. On the other hand,the effects of noise
onto the filter become less relevant and they are mitigated bythe past observations.
Therefore, the percentage of false positives is lower. Clearly, for smalleru’s value,
the opposite behavior should be observed.

Updating time. This is the period between two subsequent updates of parametersα
andβ according to the observations harvested about the packets that, wrongly, are
not forwarded. Too frequent updates can cause problem to thebayesian filters if the
noise is relatively high. If the the filter’s parameter is updated frequently and the
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Figure 6.1. Actual detections and false positives in a static scenario.

packet losses are high, it is likely that the number of packets received in the update
period is nearly 0%, thus causing nodes to be wrongly considered as malicious.
Conversely, if the observation time is too long, parametersare updated too infre-
quently and, hence, the time to detect a malicious node may become unacceptable.

6 Evaluation

We have performed several tests using the ns-2 simulator [13] in order to evaluate the
approach and to tune some of the parameters of the bayesian filters used inside the
watchdog. In our simulation we considered a network of 50 nodes moving in an area
870x870 mt wide.

We have performed our experiments both considering static and dynamic scenarios.
The mobility affects the accuracy of the watchdog due to two important aspects:(i)
routes used for the traffic flow need to be recalculated each time the topology changes,
causing packet losses; and(ii) if the attacker is moving, there is a possibility that the ma-
licious node moves outside the watchdog’s signal range before it is detected. Both char-
acteristics of these scenarios cause false negatives and false positives to be increased.

6.1 Static Scenario

We use random scenarios for validating the implementation of our bayesian watchdog.
In the first place we perform several tests to evaluate the behaviour of the watchdog’s
module in a static scenario. Figure 6.1 shows how the bayesian watchdog detects the
100% of the attacks independently of the number of attackersthat there are in the net-
work, and therefore a 0% of false negatives. The absence of mobility makes the number
of false positives negligible. But, that is not a realistic setting.
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Figure 6.2. Percentage of (a) actual attacks detected and (b) false positives for different tolerance
threshold and for different devices’ speed.

6.2 Dynamic Scenario

The experiments described below are targeted to find the besttuning of parameters in
order to improve the effectiveness. The experiments have been conducted for different
motion speeds of the MANET devices, thus verifying how the speed can affect the
detection of malicious nodes.

Evaluation of the Tolerance Threshold γ. We perform different tests in scenarios
with different mobility speeds and changing the tolerance threshold. Figure 6.2 shows
the results measured. For both of diagrams, thex axis represents the various thresholds
tested. In Figure 2(a) and Figure 2(b), they axes measure respectively the percentage
of actual attacks detected and false negatives. For the results’ analysis, it seems any
threshold between 0.75 and 0.85 decreases the false positives while keeping a good rate
detection.

A survey of the ns-2 trace shows that an higher value of gamma (closer to1) causes
the bayesian watchdog to be more strict when detecting an attack, decreasing the false
positives but also decreasing the percentage of detection.This is caused by the fact that,
as discussed in Section 5, the watchdog needs an higher valueof alpha to decide if a
neighboring node is malicious, and therefore, more time is needed to detect it.

Evaluation of the Fading Value u. The next step is to evaluate what is the influence of
the fading value upon the accuracy of detection. Figure 6.3 shows the results obtained
when varying the fading value of the bayesian watchdog. We use a gamma value of 0.85
for these tests, as it seemed the most suitable according to the results of the previous
experiments for the tolerance threshold.

As shown in Figure 6.3, we can see how an high value of fading ismore robust
against false positives. But, when a node starts behaving maliciously, it takes longer
to detect that. Therefore, such a longer time decreases the accuracy of detecting actual
attacks. As a result, the optimal fading value may be depending on the needs of the
network. E.g., if the routing protocol needs to recalculatenew routes frequently due



 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

D
et

ec
tio

n 
(%

)

Fading Value

5 m/s
10 m/s
15 m/s
20 m/s

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

F
al

se
 p

os
iti

ve
s 

(r
at

io
 r

es
pe

ct
 to

 th
e 

re
al

 a
tta

ck
s)

Fading Value

5 m/s
10 m/s
15 m/s
20 m/s

(b)

Figure 6.3. Percentage of (a) actual attacks detected and (b) false positives for different fading
values and different mobility speeds.
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Figure 6.4. Percentage of (a) actual attacks detected and (b) false positives whenvarying the
updating time.

to a high value of the node’s speed, a higher value of fading isrecommended. Or, if a
malicious node performs intermittent attacks, a lower value of fading is needed.

Evaluation of the Update Time. Figure 6.4 confirms what stated in Section 5: shorter
update time of the parameters of the bayesian filter increments the detection of false
negatives but also decrements the accuracy for what concerns the false positives.

6.3 Comparing the Bayesian Watchdog with a Standard One

The section proposes a comparison between the standard watchdog and the bayesian
watchdog in order to judge whether bayesian filters can really be supportive in the
accuracy of the detection of malicious nodes. Specifically,we have used a standard
watchdog that was previously implemented [7] (with tolerance threshold of 20%). As
far as the bayesian watchdog, the tolerance has been set to0.85, the fadingu to 0.5 and
the updating time to 2 seconds.

Figure 6.5 shows a comparison between the bayesian watchdogand the standard
watchdog in a set of scenarios where the degree of mobility isvarying. As far as the
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Figure 6.5. Comparison between both watchdogs with different degrees of mobility: (a) actual
attacks detected and (b) false positives.

percentage of actual attacks detected, Figure 6.5(a) showsthat the bayesian watchdogs
perform mostly at the same level as the standard. Some small improvements have been
measured for scenarios where nodes were moving faster. In fact, the bayesian watchdog
is less affected by the problem of the mobility as explained at the beginning of this
section.

The best improvement has been measured for what concerns false positives that
have been decreased of 20%. Indeed, the bayesian filter dealsvery well with noisy
environment such as MANETs. A smaller influence of the noise in the measurement of
the non-correctly forwarded packets has resulted in a slower number of false positives.

In addition to a significant decrease of false positives, thebayesian watchdog is also
able to detect malicious behaviors more quickly that standard ones.

7 Conclusions and Future Work

The work described in this paper is aimed at increasing the accuracy of the detection of
malicious nodes’ behaviour in P2P networks, as MANETs. One of the most significant
problems of the standard watchdog are concerned with the influence of the noisy ob-
servation upon the accuracy. Here we have proposed a new class of watchdogs that rely
on bayesian filters. Bayesian filters are broadly used in several scenarios due to their
ability to reduce the influence of the noise on the measurements.

In the standard watching, most of the false positives and negatives are caused by the
erroneous measurements of the packets that nodes should forward but actually they do
not. The erroneous measurements are mostly caused by the unrealibility of the wireless
medium. Nothing can be done on reducing that. But bayesian filtering deal very well
with preventing this node from influencing the judgement of the maliciousness of given
devices.

We have devised a technique to integrate bayesian filtering techiques inside the
watchdogs and we have conducted some experiments inside an ns-2 implementation
to verify the approach. The integration of bayesian filtering inside the watchdogs has
decreased the number of false positives detected while the percentage of the detection



of the actual attacks has been kept quite high (or, even, slightly improved). As future
work, we intend to provide a concrete implementation of our bayesian watchdog and to
perform a deeper experimental phase on the real devices.

Moreover, we argue that the approach to detect malicious nodes can be applied also
to other P2P networks (e.g., application overlay networks)by suitably modifying the
conceps of what it is observed and what is the noisy (transmitted packets in MANETs,
could be application messages in overlay networks, etc.)
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